WEEK 13: FSQCA IN R

THOMAS ELLIOTT

This week we’ll see how to run qualitative comparative analysis (QCA) in R. While Charles Ragin
provides a program on his website for running QCA, it is not able to do so algorithmically, meaning
you have to manually run each analysis. QCA in R is not as easy to do as with Ragin’s software,
but it does allow for running QCA algorithmically (which can be incredibly useful when trying out
various calibrations and cut-offs as robustness checks).

Note that I am assuming some basic knowledge of QCA throughout this hand out.
QCA is an R package for running various types of QCA. To install, type:
install.packages("QCA")

Once installed, type the following to load the package into memory:

library(QCA)

You only have to install the package once, but you will need to load the package into memory
each time you start R new. QCA comes with several functions, but we will focus on three this
week.

1. CALIBRATING DATA

The first function we will use is the calibrate function. This allows us to take variables and
convert them to membership scores for causal and outcome sets. We will use the mtcars data set
for our examples.

> data("mtcars")
> head(mtcars)
mpg cyl disp hp drat wt qgsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0O O 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 O 3 1

Let’s create a fuzzy set based on the cars’ mpg:

mtcars$mpg. fuzzy<-calibrate(mtcars$mpg,type="fuzzy",thresholds = c(10,20,30))
> head(mtcars[,c("mpg", "mpg.fuzzy")])

mpg mpg.fuzzy

Mazda RX4 21.0 0.5730837
Mazda RX4 Wag 21.0 0.5730837
Datsun 710 22.8 0.6951786

Hornet 4 Drive 21.4 0.6016204

Date: April 11, 2016.

WEEK 13: FSQCA IN R 2

Hornet Sportabout 18.7 0.4054573
Valiant 18.1 0.3636763

Above we pass three arguments to the calibrate function. The first is a vector of values to be
transformed, the second is the type of set (fuzzy or crisp) we are creating. The third is the
thresholds we are using to transform the data. Thresholds should be passed in the order of lower,
cross-over, upper. The calibrate function returns a vector of the same length as the one we passed,
but with values transformed to membership scores in the set. The calibrate function will accept
many more arguments to customize how it calculates membership scores, but the above example
is probably the most common use of the calibrate function.

Note that the calibrate function included in the QCA package does not exactly reproduce the
values from a direct transformation based on the logistic function as described in Ragin’s Redesign-
ing Social Inquiry, though it gets very close (within 3-4 decimal points) and likely will not produce
substantively different results. If you would like a function that reproduces the direct transforma-
tion method, you can install the myQCA package I wrote, which contains the fsCalibrate function.
Assuming you have the devtools package installed (which comes standard with RStudio):

devtools::install_github("thom82/myQCA")

2. THE TRUTH TABLE

QCA includes the truthTable function for creating truth tables. The truthTable contains a lot of
optional arguments to customize the type of QCA we want to do. For the following examples, we
will use the data set used in Cress and Snow’s 2000 AJS article about homeless mobilization:

> data(d.homeless)
> head(d.homeless)
VI DT SA CS DF PF REP RES RIG REL

PUH 11 1 1 1 1 1 1 1 1
A0S 1 0 1 1 1 1 1 1 1 1
OUH 11 1 0 1 1 1 1 1 1
TUH 11 1 0 1 1 1 0 1 1
PUEJ 1 1 1 1 1 1 0 O 1 1
DTUH 1 1 1 0 1 1 1 0 1 0

The truthTable function takes a few different arguments. First, a data frame containing the data
for your analysis. Second, the name of the column containing the outcome set. Third, a character
vector containing the column names of the condition (or causal) sets. You can leave the conditions
argument out and by default the function will use all columns other than the outcome as condition
sets. Fourth, incl.cutl sets the consistency cut-off for inclusion. You can also set incl.cutO
for the consistency cut-off for exclusion, and rows in between will be coded as contradictions. By
default, the function sets incl.cutO to the same value as incl.cutl so there are no contradictory
rows. Finally, I like to have the truth table sorted by the rows’ consistency scores, so I pass
the sort.by="incl" argument to do this. Below is the truth table for the homeless data with
representation as the outcome:

> truth<-truthTable(d.homeless,outcome="REP",

+ COIlditiOIlS=C("VI" , IIDTII s IlSAII s IICSII , IIDFII s IIPFII) s
+ incl.cut1=0.8,
+ sort.by="incl")

> truth

WEEK 13: FSQCA IN R 3

OUT: outcome value
n: number of cases in configuration
incl: sufficiency inclusion score

VI DT SA CS DF PF OUT n incl PRI

40 1 0 0 1 1 1 1 1 1.000 1.000
48 1 0 1 1 1 1 1 1 1.000 1.000
60 1 1 1 0 1 1 1 3 1.000 1.000
64 1 1 1 1 1 1 0 2 0.500 0.500

10 0 0 00 0O 0O 2 0.0000.000
2 00 0 0 0 1 0 2 0.000 0.000
130 60 11 0 O O 1 0.000 0.000
18 0 1 0 0 0 1 0 1 0.000 0.000
22 01 60 1. 0 0O O 1 0.000 0.000
22 01 0 1 0 1 0 1 0.000 0.000

One other argument that we don’t include here, but that will be useful for larger data sets is the
n.cut argument, which by default is set to 1, meaning rows with less than 1 case will be coded as
remainder rows. You can set this higher to code rows with few cases as remainders.

3. COMPUTING SOLUTIONS

The minimizing function in the QCA package is called eqmcc. We could pass it the data frame,
along with the same parameters we included in the truthTable function, but as a short cut we can
also just pass the truth table object.

> eqgmecc (truth,details=TRUE)

n OUT = 1/0/C: 5/10/0
Total . 15

M1: VI*dt*xCS*DF*PF + VI*DT*SA*cs*DF*PF <=> REP

incl PRI cCov.r cov.u
1 VI*dt*CS*DF*PF 1.000 1.000 0.333 0.333
2 VI*DT*SA*cs*DFxPF 1.000 1.000 0.500 0.500

M1 1.000 1.000 0.833

You have to include the details=TRUE parameter to get the coverage and consistency scores for
the solution. This is the complex solution, meaning no simplifying assumptions are being made
to produce the solution. The incl column contains the consistency score for the row, the cov.r
contains the raw row coverage and cov.u contains the unique row coverage. The last line contains
the total consistency and coverage scores for the solution.

We can get the parsimonious solution of the above data. The include parameter tells the function
to include additional rows based on the coded outcome. The question mark tells the function to
include the remainder rows.

> eqmcc (truth,details=TRUE, include="7")

WEEK 13: FSQCA IN R 4

n OUT = 1/0/C: 5/10/0

0.500
0.333

0.500

Total : 15
M1: cs*DF + dt*DF <=> REP
M2: cs*DF + VIxdt <=> REP
M3: cs*DF + dt*CS*PF <=> REP
M4: dt*DF + SA*cs <=> REP
M5: dt*DF + VIxcs <=> REP
M6: SA*cs + VI*dt <=> REP
M7: SA*cs + dt*CS*PF <=> REP
M8: VI*cs + VIxdt <=> REP
M9: VI*cs + dt*xCS*PF <=> REP
incl PRI cov.r cov.u (M1) (M2) (M3) (M4) (M5) (M6) M7)
1 cs*DF 1.000 1.000 0.500 0.000 0.500 0.500 0.500
2 dtxDF 1.000 1.000 0.333 0.000 0.333 0.333 0.333
3 SAxcs 1.000 1.000 0.500 0.000 0.500 0.500 0.500
4 VIxcs 1.000 1.000 0.500 0.000 0.500
5 VIxdt 1.000 1.000 0.333 0.000 0.333 0.333
6 dtxCS*PF 1.000 1.000 0.333 0.000 0.333 0.333
M1 1.000 1.000 0.833
M2 1.000 1.000 0.833
M3 1.000 1.000 0.833
M4 1.000 1.000 0.833
M5 1.000 1.000 0.833
M6 1.000 1.000 0.833
M7 1.000 1.000 0.833
M8 1.000 1.000 0.833
M9 1.000 1.000 0.833

Above illustrates a drawback of the QCA package in R: when there are multiple, redundant prime
implicants, where in Charles’ software you would be asked to choose which ones to include, the
QCA package in R displays all possible results in a way that is not very intuitive. In the above
table, to choose a solution look at the various M columns - each one represents a possible solution,
containing the individual recipes for which coverage scores are supplied. For example, solution M1
contains the first and second recipes, while solution M2 contains the first and fifth recipes.

To get the intermediate solution, we include remainder rows, but also supply directional expec-
tations. The argument dir.exp takes a vector of the same length as conditions, where each
element can be either 0, 1, or “”. 0 indicates the absence of the condition is expected to lead to
the outcome, 1 indicates the presence of the condition is expected to lead to the outcome, and “-”
indicates either the presence or absence is expected to lead to the outcome.

> eqmcc(truth,details=TRUE, include="7",dir.exp=c(1,1,1,1,1,1))

n 0OUT = 1/0/C: 5/10/0
Total . 15

p.sol: cs*xDF + dt*DF

M1: VI*dt*CS*DF*PF + VI*DT*SA*cs*DF*PF <=> REP

WEEK 13: FSQCA IN R 5

1 VI*dt*CS*DF*PF 1.000 1.000 0.333 0.333
2 VI*DT*SA*cs*DF*PF 1.000 1.000 0.500 0.500

M1 1.000 1.000 0.833

Note that R outputs the same solution multiple times. This is another area where multiple redun-
dant prime implicants produces weird output. All are valid solutions.

	1. Calibrating Data
	2. The Truth Table
	3. Computing Solutions

