WEEK 1: AN INTRODUCTION TO R

THOMAS ELLIOTT

1. INsTALLING R

The first thing you will want to do if you plan on using R is to install it to your computer. R
and official packages for R are maintained on CRAN (Comprehensive R Archive Network),
which we will talk about more in week 3. For now, it’s enough to know that this is where
you go to install R and to download updates to the core R program. You can go to https:
//cran.r-project.org/ and click on the link appropriate for your operating system to
download R. Following the instructions for installing R and once you are done you should
be good to go.

To start R from the command line, open up terminal (or whatever the command line program
is called on your operating system), navigate to the folder in which you will be doing your
analysis, then type R. This will start R in your command line window. To exit R, you can
type quit () or simply q(). R will ask whether to save a copy of your workspace to a hidden
data file in the current working directory (more on all of this later — I rarely say yes to this
prompt) and then you will exit back into your command line for your operating system.

2. INSTALLING RSTUDIO (OPTIONAL)

I use R inside of RStudio. RStudio is an IDE (Integrated Development Environment) for R,
which means it comes with some extra features that make programming in R, and thus data
analysis in R, much easier than working strictly from the command line. Especially if you
are new to R, I strongly recommend downloading and installing RStudio as well. RStudio
requires R to be installed and is separate from your R install, so you can still use R from
the command line even if you install RStudio.

To download RStudio, go to https://www.rstudio.com/products/rstudio/download/
and download the appropriate version for your operating system. Follow the instructions to
install the program and once you are done you should be good to go. Just launch RStudio
and a session of R will automatically be started in the command line pane of RStudio.

The creators of RStudio also work on a number of packages that make data manipulation
much easier than base R (by base R I mean R and those packages automatically loaded when
you first start a new R session), as well as a number of other tools that simplify or enhance
data analysis. I'll discuss these more as they become relevant, and will try to show how to
do something in base R, then show how packages make the process easier. This way, you’ll
know how it works in base R, but will also know how to save time/code/headache by using
relevant packages.

Date: January 7, 2016.

https://cran.r-project.org/
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/

WEEK 1: AN INTRODUCTION TO R 2

3. BAsics orF R

R, like Stata, is a command line program, meaning you type commands into the command
line in order to do things (as opposed to SPSS which is clicking through menus and windows).
R’s language is more closely related to computer programming languages like C++ and Java
than Stata’s language, which makes it simultaneously more powerful and more difficult to
learn. Let’s start with something basic, though: assigning a variable a value.

Assignment in R is done using the <- command:

x<—H

The code above defines a variable called x and assigns the value of 5 to it. You can update
x by simply reassigning a new value to it:

x<—x+2

Now x should contain the value 7. You can verify it by typing x into the command line and
pressing enter - this will print the contents of the variable to the console:

> X
(1] 7

Nice that [1] that gets outputting before the 7. That’s because x is interpreted as a vector
of length 1 and 7 is the first value in this vector - we’ll talk more about vectors and other
data objects later.

This is a good chance to point out one fundamental difference between Stata and R: Stata
often builds in barriers to doing something stupid, for example you have to use replace to
change a variable so you don’t accidentally over-write a variable with generate. R does not
have these same conventions and so it is very easy to over-write data accidentally in R. This
means you, as the user, need to be particularly vigilant as you produce your analyses.

We can create a new variable by simply assigning a value to a differently named vari-

able:

y<—x—4
>y
[1] 3

So we assigned the value x — 4 to y and and then printed the contents of y. This is a good
time to talk about the workspace.

3.1. The Workspace. In Stata, you open one dataset at a time so your workspace merely
consists of the variables in that dataset (plus any matrices or macros you might have created
during your session). R, however, allows you to load up multiple datasets into the same
workspace, along with many other types of data objects, which I'll describe briefly later and
in more detail as the semester goes along. To see a list of all objects currently loaded in the
workspace, you can type 1s() into the command line and press enter:

WEEK 1: AN INTRODUCTION TO R 3

FiGURE 1. Workspace Pane of Rstudio

Environment History

[-] _ Import Dataset~ 3" List~

"), Global Environment =
Values

X

y

So this tells us that there are currently two objects loaded in the workspace, one named x
and another named y. This is one area in which RStudio is really helpful. 1s() doesn’t
tell us what x and y are, just that there are objects with those names in our workspace.
RStudio, however, has an environment pane that lists all the objects currently loaded in our
workspace, plus some additional information about what the objects are and the contents of
those objects. Figure [I| shows an example of the RStudio workspace pane. You can see that
it lists the x and y variables, along with the values contained in those variables.

A more complex example would be a workspace for a project involving some data from my
dissertation. Typing 1s() provides:

> Is ()

[1] 7articles” 7claim . talk” "claims” 7codes”
"exclude”

[6] "rangezero” ”smos . data” "talk.info” 7terms”
7users”

[11] 7yearly.support” "yearly.terms”

Whereas RStudio’s workspace pane is shown in Figure[2 RStudio separates out data frames
from vectors, arrays, and matrices, and also separately lists out functions. Additional,
relevant data is shown for each object. This makes it much easier to organize your workspace
and keep track of what you have loaded.

R’s ability to load multiple, complex data objects into the same workspace is one of the more
powerful aspects of R.

WEEK 1: AN INTRODUCTION TO R 4

F1GURE 2. Workspace Pane of RStudio
Environment History
T [l _f"Import Dataset~ ¥ List~

Global Environment =

Data

Jarticles 861 obs. of 22 variables iz|
claim.talk 2596 obs. of 7 variables i)

Jclaims 13 obs. of 3 variables iz|
smos.data 224 obs. of 8 variables i)

Jtalk.info 2789 obs. of 10 variables iz|
terms 3206 obs. of 3 variables i)

Jusers 3 obs. of 3 variables |

yearly.support 61 obs. of 7 variables |

Jyearly.terms 61 obs. of 8 variables |
LELEE yearly.terms (data.frame, 5064 bytes)

codes chr [1:13] "frontpage" "paragraphs" "arti.

exclude chr [1:22] "title" "date" "newspaper" '"pa..
Functions

rangezero function (x)

3.2. Data Objects. Because R can have multiple data objects loaded at once, there is a
greater variety of types of data objects R can work with. I briefly mention the most common
types here, and we’ll discuss them more as is relevant throughout the semester:

Data Frames: This is the closest to a data set object R has, and works much like a
data set in Stata might work. In a data frame, R assumes that columns are variables
and rows are observations. Each column can be a different data type (int, double,
string — more on this later in the semester). Much of the analysis functions (like
regression) will ask for a data frame to be passed to it in order to do its analysis, so
it will also be the most common data object you will likely work with in R. When
you import data from spreadsheets (more on this later in the semester), the data will
be saved to a data frame object in your workspace.

vectors: Vectors are one dimensional groups of values of the same type (int, double,
string). As I said earlier, when we assigned x and y above, they were created as
vectors of length 1, but you can have vectors of any length (limited by the size of
your computer’s memory).

matrices and arrays: Arrays are n-dimensional objects containing data entries of the
same type (int, double, string). Matrices are two dimensional arrays, and are specially
treated in R (meaning there are functions that work only on matrices, not higher-
dimensional arrays) since matrices are such common data structures.

factors: factors are special types of vectors for storing discrete or categorical data.
Factors allow labels to be assigned to specific values. The real benefit of factors

WEEK 1: AN INTRODUCTION TO R 5

is that when building a model for a regression, factor variables are automatically
dichotomized (equivalent of typing i.varname in Stata) and value labels are used in
the regression output. Data frame columns can be factors.

lists: Lists are a special type of vector in which the elements don’t need to be the same
data type, and are often complex data objects. For example, you could have a list in
which three elements are three different data frames, one element is a 4-dimensional
array, and one element is yet another list. Lists are useful for returning the results
of statistical analysis - for example, the results from a OLS regression are returned
as a list, with various elements containing the coefficients, the residuals, and the
significance tests. You are not likely to use lists when you are first getting started
with R, but they are very useful objects to be aware of.

functions: user created functions are stored as objects in the R workspace as well.
This is important to know, as if you define a function and name it something like
foo, then later assign a value to foo, you will have over-written the function.

	1. Installing R
	2. Installing RStudio (optional)
	3. Basics of R
	3.1. The Workspace
	3.2. Data Objects

